

19721

120 MINUTES

1.	If a, b A) C)	e, c are integers equal roots rational roots	and a +	c = b, then eq B) D)	irratio	x^2 - $bx + c = 0$ onal roots nary roots	has					
2.	Let G A) B) C) D)	be the graph o G does not pa G cuts both x- G lies only in y is an increase	ss throu axis and the first	gh the origin d y-axis and second q		_	not true	?				
3.		2) is the midpo ne equation of t 2x + y = 4	he line i	S		tline intercepte $2x + y = 2$						
4.	The equation of the circle which touches the lines $x = 0$, $y = 0$, $x = a$, $y = a$ is A) $4x^2 + 4y^2 - 4ax - 4ay + a^2 = 0$ B) $2x^2 + 2y^2 - 2ax - 2ay + a^2 = 0$ C) $x^2 + y^2 - 2ax - 2ay + a^2 = 0$ D) $x^2 + y^2 - ax - ay + a^2 = 0$											
5.	then th	focus, centre a ne equation of t $x + y - 3 = 0$	he mino	r axis is:	_			2, 3) and $\frac{1}{2}$, x + y - 5 = 0.				
6.		istance of the or $\frac{1}{2}$		-	x – 6y +	-	D)	14				
7.	∫ cos 2 A)	$x \csc^2 x dx$ is $\csc x + c$	-		C)	$\cot x + c$	D)	$-\cot x + c$				
8.	Find t	the area bounde	ed by the	e curves $y = x $	+2 , x =	-3, $x = 2$ and 1	the x-ax	is.				
	A) $\frac{49}{2}$	sq. units	B)	$\frac{33}{2}$ sq. units	C)	$\frac{17}{2}$ sq. units	D)	$\frac{15}{2}$ sq. units				
9.		contains 10 tic										

A) $^{1}/_{10}$ B) $^{3}/_{10}$ C) $^{3}/_{35}$ D) $^{9}/_{42}$

10.	Let f_n	$(x) = x^n$ be a se	equence	of functions d	efined o	on [0, 1]. Let <i>f</i> ($f(x) = \begin{cases} 0 \\ 1 \end{cases}$	$ \begin{array}{ll} \text{if } x < 1 \\ \text{if } x = 1 \end{array} $						
	and g((x) = 0 for all x	Then	which of the fo	llowing	is true?		,						
	A) B) C) D)		to g por to f uni	-										
11.	Consi	der f(x) defined	d on [0,	1] as follows.	f(x) =	0 if x is ration 1 otherwise	onal							
	Then	which of the fo	llowing	is true?	(1 otherwise								
	A) B) C) D)	f is Riemann integrable and $\int f = 0$ f is Lebesgue integrable and $\int f = 1$ f is Lebesgue integrable and $\int f = 0$												
12.	(i) (ii) (iii)	i) $A \cap B$ is measurable for some $B \subseteq \mathbb{R}$.												
	A) B) C) D)													
13.	The re	eal part of $\frac{1+2i}{1-i}$	is											
	A)	1	B)	2	C)	-1	D)	-2						
14.	If the conve	radius of convergence of $\sum a_n z_n$	ergence ²ⁿ is	of the power so	eries ∑	$a_n z^n$ is 2 then the	ne radius	s of						
	A)	2	B)	$\sqrt{2}$	C)	4	D)	$\frac{1}{2}$						
15.		n of the followi x +2xy	ng is a l B)	harmonic conju y +2xy	gate of C)	$fu(x) = x^2 - y^2 - y^2$ $y^2 - 2xy$	+ x. D)	$x^2 + 2xy$						
16.	The re	esidue of $f(z)$ =	$=\frac{e^z}{(z+1)^2}$	- at $z = -1$ is										
	A)	e	B)	$^{1}/_{\mathrm{e}}$	C)	e/2	D)	$e^2/2$						

17.	A)	2	group ge B)	4	. by (12 ₎	C)	6	s symm	D)	12	5
18.	Let f1 holds?	be a non trivial Im f is of ord		-			Z_{15} . Then is of ord		of the 1	followin	g
	C)	$\operatorname{Ker} f$ is of or	der 2.		D)	f is a	one to o	ne map).		
19.	Let G A)	be a group of o	order 70 B)	Then t	he num	ber of 5 C)	5-Sylow 5	subgro	ups of (D)	G is 7	
20.	Which A)	of the following 1+ x	ng is a z B)	zero divi 2+ x	isor in t	he poly C)	nomial r 3+2x	ring \mathbb{Z}_{12}	2 [x] ? D)	4+2x	
21.	Which A)	of the following $x^3 + 2x + 3$								x^3-2	x +1
22.		be the real cub Q] equals:	e root o	of 2 and	let Q be	e the fie	eld of rat	ionals.	Then th	e degre	e
	A)	1	B)	2		C)	3		D)	4	
23.	Let A A ⁻¹ eq	be a 3 × 3 matr quals:							-		
	A)	A	B)	A^2		C)	$A^2 - 2A$	A	D)	$A^2 + 2A$	4
24.	2x + 3y $3x + 2y$ $x + y + y$	der the following $y + z = 1$ y + 4z = 4 +z = 2 which of the fo			-		m?				
	A) B) C) D)	It has a uniqu It has exactly If has infinite It has no solu	two sol ly many	utions.	ns.						
25.	subspa A) B)	be the subspace we were span of W = span of W = span of W = span of W = span of	oroperty {(1, 1, 1 {(1, 1, 1 {(1, 1, 1	that \mathbb{R}^3), (2, 1,), (1, 2,), (0, 1,	$S = S \oplus \{1\}$ 1)} 1)} 0)}		Γhen wh	ich of t	he follo	wing	
26.		$\mathbb{R}^4 \rightarrow \mathbb{R}^4$ be a $x_2, x_3, x_4) = (x_1 \ 0$						space	of f is	D)	3
27.	Which	of the followi	ng is a c	diagonal	lizable 1	natrix?					

A)	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	1 2 0	$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$	B)	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	2 1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	C)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1 1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	D)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 2 0	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$
----	---	-------------	---	----	---	-------------	---	----	---	-------------	---	----	---	-------------	---

- Let $(x-1)^2 (x-2)^3$ be the characteristic polynomial of a diagonalizable matrix. Then 28. its minimal polynomial is
 - (x-1)(x-2) $(x-1)^2(x-2)$
- C)
- B) $(x-1)(x-2)^3$ D) $(x-1)^2(x-2)^3$
- 29. Which of the following is not true in the case of divisibility and gcd.
 - If a | bc and if (a,b) = 1, then a | c
 - If (a,b)=(a,c)=1, then (a,bc)=1B)
 - C) If(a,b)=1, then (a + b,a-b) is either 1 or 3
 - D) If (a,b)=1 and if $d \mid (a+b)$, then (a,d)=(b,d)=1.
- 30. The number of integers $n, 1 \le n \le 10$ such that $\varphi(n) = \varphi(2n)$, where $\varphi(n)$ is the Euler totient function, is
 - A) 1
- B) 2
- C) 3
- D) 4
- If the solution of the linear congruence equation $7x \equiv 6 \pmod{15}$ is of the form $x \equiv 6.7^{\text{n}}$ 31. (mod 15), then n equals
 - 3 A)
- 6 B)
- C) 7
- D) 8
- The differential equation of the family of circles touching the y-axis at the origin is 32.
 - A) $2xy \frac{dy}{dx} + x^2 = y^2$
- B) $x^2 2xy \frac{dy}{dx} = y^2$
- - $x^{2} + y^{2} + 2xy \frac{dy}{dx} = 0$ D) $x^{2} + y^{2} 2xy \frac{dy}{dx} = 0$.
- 33. The particular solution of the equation $y'' + y = \tan x$ is
 - $y = \sin x \cos x \cos x \int \sin x \tan x \, dx$
 - $y = -\sin x \cos x \cos x \int \sin x \tan x \, dx$ B)
 - $y = \sin x \cos x + \cos x \int \sin x \tan x \, dx$ C)
 - $y = -\sin x \cos x + \cos x \int \sin x \tan x \, dx$
- If $P_n(x)$ denotes the nth degree Legendre polynomial then find the value of $\int_{-1}^1 P_3^2(x) dx$ 34.
 - $^{2}/_{5}$ A)
- B) $^{2}/_{7}$
- C) $^{2}/_{3}$
- D) $^{2}/_{0}$
- The integral of the equation (4x + yz)dx + (xz 2y)dy + (xy 2z)dz = 0 is 35.
 - A) $2x^2 + y^2 + z^2 xyz = c$ B) $4x^2 2y^2 2z^2 + xyz = c$
 - C) $2x^2 y^2 z^2 xyz = c$ D) $2x^2 y^2 z^2 + xyz = c$
- The auxiliary equations for finding a complete integral of the equation p + q + pq = 036. by Charpit's method are
 - $\frac{dx}{1+a} = \frac{dy}{1+p} = \frac{dz}{p+a+2pa} = \frac{dp}{0} = \frac{dq}{0}$
 - B) $\frac{dx}{1+n} = \frac{dy}{1+a} = \frac{dz}{n+a+2na} = \frac{dp}{0} = \frac{dq}{0}$

C)	$\frac{dx}{p+1} = \frac{dy}{q+1} =$	dz p+q+2pq	$=\frac{dp}{p}=\frac{dp}{dp}$	<u>iq</u> q	D)	$\frac{dx}{1+q} =$	$=\frac{dy}{1+p}=$	<u>dz</u> p+q+2pq	$=\frac{dp}{p}=\frac{dp}{dp}$	<u>aq</u> q
The v	alue of m such	h that the	equation	on xu _{xx}	+ mu _{xy}	+ yu _{yy} -	$-2u_x =$	0 is para	abolic i	is
A)	xy	B)	\sqrt{xy}		C)	2xy		D)	$-2\sqrt{3}$	xy
which A)	be a metric or of the follow {1} is an op {1, 2} is an	ing is no en set.	t true in	this sp B)	ace. {1} is	s a close	ed set.			Then
	be the set of $d(x,y) = ma$							tric on R	<u>.</u>	
C)	$d(x,y) = \frac{ x-y }{1+ x }$	<u> y </u>		D)	d(x,y))= 1 + 2	x - y			
	be a topolog			base {(a	, ∞): a<	(0). Th	en whic	ch of the	follow	ing is
A)			1 .		C)	-1		D)	2	
	be the norme	d linear s	space R	² with n	orm	_p . Then	the val	lue of p	for whi	ch X is
A)	y convex is 1	B)	2		C)	3		D)	∞	
Let X	$=\mathbb{R}^2$ with no	rm ₁ aı	nd A ∈	BL(X)	be repre	esented	by the	matrix N	$M = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	$\binom{2}{3}$
	A is equal t		4		C)	5		D)	6	
	be the Hilber e linear span i						, 1, 0,	.)}. Ther	n the se	t
A)	{(1,0,1,0,), $(0, \frac{1}{\sqrt{2}})$	$\frac{1}{\sqrt{2}}$, 0,)}						
B)	$\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,\right.\right.$,								
C)	{(1,0,0,0,	V 2 V 2	•	•						
D)	{(1,0,0,0,), $(0, \frac{1}{\sqrt{2}},$	$\frac{1}{\sqrt{2}}$, 0,)}						

44. Let R be a relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ such that $((a,b),(c,d)) \in \mathbb{R}$ iff a-d=b-

c. Which one of the following is true about R?

A) Reflexive but not symmetric

37.

38.

39.

40.

41.

42.

43.

- B) Symmetric but not reflexive
- C) Both reflexive and symmetric
- D) Neither reflexive nor symmetric

- 45. If [], [] are the roots of $2x^3 + x^2 2x 1 = 0$, then the value of $\alpha^2 + \beta^2 + \gamma^2$.
 - A) $-\frac{1}{2}$ D)
- B) $\frac{1}{2}$ C) $\frac{3}{4}$
- If $\alpha_1, \alpha_2, \dots, \alpha_{2019}$ are the roots of $x^{2019} + 1 = 0$. Then the value of $(1 + \alpha_1)(1 + \alpha_2) \cdots (1 + \alpha_{2019})$ is the product
 - A) 0
- B) -1 C) 1
- D) 2019
- If $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = L$ and $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2} = M$, then 47.
 - L exists but M does not B) L does not exist but A) M exists
 - C) Both L and M exist
- D) Both L and M do not exist
- The domain of the functions f defined by $f(x) = \frac{\sqrt{-x}}{(x-3)(x+5)}$ is 48.
 - A) $(-\infty, -5)$ U (-5,3) U $(3,\infty)$ B) $(-\infty, 5]$ U $(3,\infty]$
- - C) $(-\infty, -5)$ U (-5,0] D) $(-\infty, 3)$ U $(3, \infty)$
- Which of the following sets of functions is countable? 49.
 - $\{ f \mid f : \mathbf{N} \to \{0,1\} \}$ i)
 - $\{ f \mid f : \{0,1\} \rightarrow N \}$
 - iii) { f | f : $\mathbb{N} \to \{0,1\}, f(1) \le f(2)\}$
 - iv) { f | f : $\{0,1\} \rightarrow N$, $f(0) \le f(1)$ }
 - A) (i) and (iii)
- B) (ii) and (iv) C) (i) only
- D) (ii) only
- 50. The equation of the plane which passes through (1,2,3) and parallel to the plane 4x + 5y - 3z = 7 is
 - A) 3x + 4y - 3z = 7

- B) 4x + 5y - 3z = 5
- 5x 4y + z = 3C)

D) 4x + 5y - 3z + 7 = 0

- 51. For what value of k is the function $f(x) = \begin{cases} \frac{1-\cos 2x}{2x^2} & , x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0?
 - A) 0 B) $\frac{1}{2}$ C) 1 D) 2
- 52. Find $\frac{dy}{dx}$ if $y=\tan^{-1}\sqrt{\frac{1+sinx}{1-sinx}}$
 - A) $\frac{1}{2(1+x^2)}$ B) $\frac{1}{2}$ C) $\frac{\pi}{4} + \frac{x}{2}$ D) $\frac{2}{1+x^2}$
- 53. If the radius of a circle is increasing at the rate of 5.5cm/s then how fast is the area of the circle increasing when the radius of the circle is 6cm?
 - A) $12 \[\] cm^2/s$ B) $36\pi \ cm^2/s$ C) $60 \[\] \] cm^2/s$ D) $66 \[\] \] \] cm^2/s$

- 54. The value of the definite integral $\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{\cos{(\frac{1}{x})}}{x^2} dx$ A) -1 B) 0 C) 1
 D) $\frac{\pi}{2}$
- 55. The number of different symmetric square matrices of order n with each element being either 0 or 1 is $\frac{n^2+n}{n^2+n}$
 - A) 2^n B) 2^{n^2} C) $2^{\frac{n^2+n}{2}}$ D) $2^{\frac{n^2-n}{2}}$
- 56. $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)$ is

 A) 0 B) $\frac{1}{2}$ C) 1 D) ∞
- 57. Let $\sum_{n=1} x_n$ be a series of real numbers. Which of the following is true?

	B)	lf	$\sum_{n=1} x$	nis di	vergen	it, thei	$\{x_n\}$	does	not co	nverge	to 0
	C)	lf	$x_n \rightarrow 0$) then	$\sum_{n=1}$	x_n is	conve	rgent			
	D)	lf	$\sum_{n=1}^{\infty} x^n$	i_n is α	conver	gent t	hen x_n^2	$\rightarrow 0$ a	as $n o$		
58.	A)	finit		disco	ntinuiti	B)	a moi infii und	nite	e funct able	ion is	
59.			e of v				C)	i		D)	$\sqrt{2}$
60.	A) B) C)	a r a s	-	ble si pole pole	ngulari $z = $ at $z = $	ty at = 0 wi = 0 wi	th resid				
z =	= 1, - <i>i</i> ,	$\frac{i(1)}{1}$	into tl - <u>z)</u> +z	he po B)	ints $\frac{i(1+z)}{1-z}$	w =	<i>i</i> , 0, − <i>i</i> C)	is <u>z-</u> 1+		D)	
62. z	$= \frac{1}{2}$	Th is	ne valı	ue of	the in	ntegral	$\int_{c} \frac{e^{-z}}{z+1}$	dz	where	c is th	e circle
	A) ' 2		τί	B)	2π	tie	C)	0		D)	$4\pi i$
63. 16			a fie nas a					F	nas a	subfield	of order
order	C) 64	Fł	nas a	subfie	eld of	order	32	D)	F h	as a si	ubfield of
64.		Whi	ich of	the f	ollowir	ig is	not tru	e?			
						U					

 $\sum_{n=1}^{\infty} x_n$ is convergent then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent

A)

	ger	nerati	C) ng ele		The are sa	order ame	of a	су	clic	grou	ip ar			of its	
65		The	order	of the	e perm	nutatio	$\operatorname{on} \left(rac{1}{4} ight)$	2 3 1 5	3 4 5 6	5 3	6 7 2 8	87	in	S ₈ is	3
	C)	A)	4 8					B)6 D)	16					
66	C)		The A)		of the	e elen		(1,2)) in B)		, × 10		Z ₁₀	is	
	ove	er Q A)	The is ℚ (√	2)		В)	Q.	(√3)	of po	olynd	omials	s {x²	²-2 ,		} Q
68	is	A)	gcd o 3+4i Both			-4+3i	in t			B)	doma - her <i>i</i>	4+3i			, .
69		A) B) ord C)	rank If A der n, rank If A rank	is a «(AB) is a then «(AB)= is a «(AB)≤ O)	m×n r ≤ mi m×n r rank m×n r rank(,	natrix in{ranl natrix A natrix A) If A	and k(A),r and and	B ank(l B B	is a B)} is a is a	an n a no a n× matrix	n sir p ma	ngula atrix,	r m	atrix	of
70	equ	uatior A)	W be ns 2x+ 0			-			х+у			hen	dim		S

A) Every cyclic group is abelian

/1.	A) B) C)	ch of the form $T: \mathbb{R}^3 \to \mathbb{R}^3$ do $T: \mathbb{R}^2 \to \mathbb{R}^2$ of $T: \mathbb{R}^2 \to \mathbb{R}^2$ of $T: \mathbb{R}^3 \to \mathbb{R}^2$ do $T: \mathbb{R}^3 \to \mathbb{R}^2$ do	lefined defined defined	by T(x,y,by T(x,y)	(x,z) = (x+y) (y)=(x.0) (y)=(y,x)	, x		/+z)	
72.	The	solution of	the lir	near cong	gruence	$4x \equiv 3($	(mod 7) is		
	A)	2(mod7) 8(mod 7)	B)	4(mod 7	7)	C)	6(mod 7)	D)	
	$x^2ydy =$	integrating = 0 is			ifferential				
	A)	$\frac{-4}{x}$	B)	x^4		C)	$\frac{x}{4}$	D)	$\frac{1}{x^4}$
74.		wronskian 2 D) $\frac{1}{2}$			al equati	on $\frac{d^2y}{dx^2}$	+4y = 4 se C) sinf		
75.	A) B)	$J_{-n}(x)$ is the $J_{-n}(x) = -J_{-n}(x) = J_{n}(x)$ and $J_{-n}(x) = (-J_{-n}(x))$	$-J_n(x)$ $J_n(-x)$ $J_n(-x)$	re indepe		er n,n	$\in \mathbb{Z}$. Then		
76.		generating	4	n for the	Legend				
	,	(1+2xz+1)	•				$(1-2xz+1)^{-1}$	$(z^2)^{\frac{1}{2}}$	
	C)	(1-2xz+	$(Z^2)^{\frac{1}{2}}$		D)	(1+2)	$(2xz+z^2)^{\frac{-1}{2}}$		
77.		order and	degree	of the	partial d	ifferenti	ial equatio	n	
$\frac{\partial}{\partial z}$		$\left(\frac{\partial u}{\partial z}\right)^3$ are				_			_
	A) 1	2, 3	B)	3, 2	C)	2,	1	D)	3,
78.		Which of	the fol	lowing is	not tru	e?			

	A)		•			T ₁ space		•	•			
	B)	The	product	of	two	complete	ely re	egular	spaces	is co	omplet	tely
r	egular											
	C)	The	product	of	two	first cou	untabl	e spac	ces is f	irst c	ounta	ble
	D)	The	product	of	two	second	coun	table s	space is	sec	ond	
C	countable	Э										
79.		Whic	h of th	e fo	ollowi	ng is no	ot a	Banacl	h space	?		
	A)			B)		J			c_{00}		D)	
	• •				•	al set of $+x_2+x_3 ^2$		inner	product	spac	ce X	with
	A)	$2\sqrt{3}$	3	B)	6		C)	12	ſ))	36	